Passage Reranking for Question Answering Using Syntactic Structures and Answer Types

نویسندگان

  • Elif Aktolga
  • James Allan
  • David A. Smith
چکیده

Passage Retrieval is a crucial step in question answering systems, one that has been well researched in the past. Due to the vocabulary mismatch problem and independence assumption of bag-of-words retrieval models, correct passages are often ranked lower than other incorrect passages in the retrieved list. Whereas in previous work, passages are reranked only on the basis of syntactic structures of questions and answers, our method achieves a better ranking by aligning the syntactic structures based on the question’s answer type and detected named entities in the candidate passage. We compare our technique with strong retrieval and reranking baselines. Experimental results using the TREC QA 1999-2003 datasets show that our method significantly outperforms the baselines over all ranks in terms of the MRR measure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encoding Semantic Resources in Syntactic Structures for Passage Reranking

In this paper, we propose to use semantic knowledge from Wikipedia and largescale structured knowledge datasets available as Linked Open Data (LOD) for the answer passage reranking task. We represent question and candidate answer passages with pairs of shallow syntactic/semantic trees, whose constituents are connected using LOD. The trees are processed by SVMs and tree kernels, which can automa...

متن کامل

Using Syntactic Information for Improving Why-Question Answering

In this paper, we extend an existing paragraph retrieval approach to why-question answering. The starting-point is a system that retrieves a relevant answer for 73% of the test questions. However, in 41% of these cases, the highest ranked relevant answer is not ranked in the top-10. We aim to improve the ranking by adding a reranking module. For re-ranking we consider 31 features pertaining to ...

متن کامل

Advanced Structural Representations for Question Classification and Answer Re-ranking

In this paper, we study novel structures to represent information in three vital tasks in question answering: question classification, answer classification and answer reranking. We define a new tree structure called PAS to represent predicate-argument relations, as well as a new kernel function to exploit its representative power. Our experiments with Support Vector Machines and several tree k...

متن کامل

Using Syntactic Features in Answer Reranking

This paper describes a baseline question answering system for Swedish. The system includes modules to carry out the question analysis, hypothesis generation, and reranking of answers. It was trained and evaluated on questions from a data set inspired by the Swedish television quiz show Kvitt eller Dubbelt. We used the Swedish Wikipedia as knowledge source and we show that paragraph retrieval fr...

متن کامل

ConvKN at SemEval-2016 Task 3: Answer and Question Selection for Question Answering on Arabic and English Fora

We describe our system, ConvKN, participating to the SemEval-2016 Task 3 “Community Question Answering”. The task targeted the reranking of questions and comments in real-life web fora both in English and Arabic. ConvKN combines convolutional tree kernels with convolutional neural networks and additional manually designed features including text similarity and thread specific features. For the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011